Therapeutic Uses of Molybdenum
Molybdenum is an essential trace element and is a component of vitamin and mineral supplements. Some therapeutic uses of molybdenum compounds are described in this section.
THERAPEUTIC
Mo NANOCLUSTERS
Synthesis of fluorescent molybdenum nanoclusters at ambient temperature and their application in biological imaging
We introduce for first time a facile protocol for the rapid synthesis of a molybdenum nanoclusters (MoNCs) at room temperature using thiolated dithiothreitol (DTT) as capping agents. The initial fluorescence from the MoNCs is observed in 30min and further intensified in 48h. The mean diameter of nanoclusters was found to be 1.5nm with -77mV zeta potential. The nanoclusters have good stability in all tested pH ranges, especially between pH7 and 10. This property makes the nanomaterial to be ideal for many types of possible biological/biomedicine applications such as drug delivery or biological imaging. The quantum yield of thiolated MoNCs was calculated to be 59% which is higher than the noble metal nanoclusters reported earlier. The mechanism of formation of MoNCs was investigated using the UV-Vis spectroscopy and cyclic voltammetry. Owing to these characteristics, MoNCs were used for imaging of HaCaT and A549 cancer cells. The current approach on novel synthesis of MoNCs is found to be a superior alternative to conventional/popular MoS2 based on the method of synthesis, particle size, and fluorescence quantum yield. The current approach on the MoNCs has created a new platform for future biomedicine applications.
A. K. Sharma, S. Pandey, N. Sharma, and H. F. Wu,Synthesis of fluorescent molybdenum nanoclusters at ambient temperature and their application in biological imaging, Materials science & engineering. C, Materials for biological applications, 2019, 99, 1-11.
THERAPEUTIC
MoS2 BIOSENSOR CANCER
Highly efficient Polyaniline-MoS2 hybrid nanostructures based biosensor for cancer biomarker detection
In this work, polyaniline nanospindles have been synthesized using iron oxide as sacrificial template. These nanospindles were utilized for the fabrication of PANI-MoS2 nanoflower architectures via hydrothermal route. The electrostatic interaction between PANI and MoS2 improves the conductivity and provides more direct paths for charge transportation. SEM, TEM, XRD, Raman Spectroscopy techniques were employed to explore the crystal structure, and morphological properties of the PANI-MoS2 nanocomposite. Furthermore, an electrochemical biosensing platform based on PANI-MoS2 nanocomposite was fabricated for the specific detection of chronic myelogenous leukemia (CML) by using electrochemical impedance spectroscopy technique. The binding interactions between the pDNA/PANI-MoS2/ITO bioelectrode and target DNA sequence were also studied. The biosensor exhibits high sensitivity and wide detection range (10(-6) M to 10(-17) M) of target DNA with low detection limit (3x10(-18) M). Additionally, the specificity studies of the genosensor with various target DNA sequences (complementary, noncomplementary and one base mismatch) and real samples analysis of CML shows its potential for clinical diagnostics.
A. Soni, C. M. Pandey, M. K. Pandey, and G. Sumana,Highly efficient Polyaniline-MoS2 hybrid nanostructures based biosensor for cancer biomarker detection, Analytica chimica acta, 2019, 1055, 26-35.
MoS2 CANCER
Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy
Molybdenum disulfide (MoS2)-based drug delivery systems have shown considerable potential in cancer nanomedicines. In this work, a multifunctional nanoplatform comprising MoS2 nanosheets decorated with copper sulfide (CuS) and further functionalized with polyethylene glycol (PEG) is reported. The resultant material has a particle size of approximately 115nm, and can be loaded with doxorubicin (DOX) to a loading capacity of 162.3mg DOX per g of carrier. Drug release is triggered by two stimuli (near infrared (NIR) irradiation and pH), and the carrier is shown to have excellent colloidal stability. The presence of both MoS2 and CuS leads to very high photothermal conversion efficiency (higher than with MoS2 alone). In vitro experiments revealed that the blank CuS-MoS2-SH-PEG carrier is biocompatible, but that the synergistic application of chemo-photothermal therapy (in the form of CuS-MoS2-SH-PEG loaded with DOX and NIR irradiation) led to greater cell death than either chemotherapy (CuS-MoS2-SH-PEG (DOX) but no NIR) or photothermal therapy (CuS-MoS2-SH-PEG with NIR). A cellular uptake study demonstrated that the nanoplatform can efficiently enter tumor cells, and that uptake is enhanced when NIR is applied. Overall, the functionalized MoS2 material developed in this work exhibits great potential as an efficient system for dual responsive drug delivery and synergistic chemo-photothermal therapy. The route employed in our work thus provides a strategy to enhance photothermal efficacy for transition metal dichalcogenide drug delivery systems.
X. Zhang, J. Wu, G. R. Williams, Y. Yang, S. Niu, Q. Qian, and L. M. Zhu,Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy, Journal of colloid and interface science, 2019, 539, 433-441.
THERAPEUTIC
Tumor-Targeted and Biocompatible MoSe2 Nanodots@Albumin Nanospheres as a Dual- Modality Therapy Agent for Synergistic Photothermal Radiotherapy
Integrating multiple tumor therapy functions into one nanoplatform has been a new tumor therapy strategy in recent years. Herein, a dual-modality therapy agent consisting of molybdenum selenide nanodots ( MoSe2 NDs) and bovine serum albumin (BSA) assembled nanospheres ( MoSe2@BSA NSs) was successfully synthesized. After conjugation of folic acid (FA) molecules via polyethylene glycol (PEG) "bridges," the FA- MoSe2@BSA NSs were equipped with tumor-targeting function. The BSA and PEG modifications provided the unstable MoSe2 NDs with excellent physiological stability. Since the end-product FA- MoSe2@BSA NSs had strong near-infrared (NIR) and X-ray absorbance properties, they exhibited good photothermal properties with excellent photothermal stability and radio-sensitization ability, hence, were explored as photothermal radiotherapy agents. In vitro and in vivo experiments indicated that the FA- MoSe2@BSA NSs possessed highly efficient tumor-targeting effect, great biocompability, and synergistic photothermal radiotherapy effect. This work suggests that such biocompatible FA- MoSe2@BSA NSs may be a promising multifunctional dual-modality tumor therapy agent for use in combination tumor therapy.
F. Qi, and R. Liu,Tumor-Targeted and Biocompatible MoSe2 Nanodots@Albumin Nanospheres as a Dual- Modality Therapy Agent for Synergistic Photothermal Radiotherapy, Nanoscale research letters, 2019, 14, 67.
infrared light energy. https://www.sciencedirect.com/topics/engineering/photothermal-therapy.]
Molybdenum cofactor deficiency type B knock-in mouse models carrying patient-identical mutations and their rescue by singular AAV injections
Molybdenum cofactor deficiency is an autosomal, recessively inherited metabolic disorder, which, in the absence of an effective therapy, leads to early childhood death due to neurological deterioration. In type A of the disease, cyclic pyranopterin monophosphate (cPMP) is missing, the first intermediate in the biosynthesis of the cofactor, and a biochemical substitution therapy using cPMP has been developed. A comparable approach for type B of the disease with a defect in the second step of the synthesis, formation of molybopterin, so far has been hampered by the extreme instability of the corresponding metabolites. To explore avenues for a successful and safe gene therapy, knock-in mouse models were created carrying the mutations c.88C>T (p.Q30X) and c.726_727delAA, which are also found in human patients. Recombinant adeno-associated viruses (rAAVs) were constructed and used for postnatal intrahepatic injections of MoCo-deficient mice in a proof-of-concept approach. Singular administration of an appropriate virus dose in 60 animals prevented the otherwise devastating phenotype to a variable extent. While untreated mice did not survive for more than 2 weeks, some of the treated mice grew up to adulthood in both sexes.
J. Reiss, molybdenum cofactor deficiency type B knock-in mouse models carrying patient-identical mutations and their rescue by singular AAV injections, Human genetics, 2019.
Cysteamine functionalized MoS2 quantum dots inhibit amyloid aggregation
In this study, cysteamine-functionalized molybdenum disulfide quantum dots ( MoS2 QDs) were synthesized by a one-pot hydrothermal method. A range of techniques including of Thioflavin T and 8-Anilino-1-naphthalenesulfonic acid fluorescence assays, circular dichroism, and transmission electron microscope have been employed to determination the efficacy of MoS2 QDs on the inhibition/reversion of fibrillation and hindering cytotoxicity induced by protofibrils and amyloid fibrils of bovine serum albumin (BSA). Results demonstrated that MoS2 QDs could effectively inhibit the fibrillogenesis and destabilize preformed fibrils of BSA in a concentration-dependent manner. Cytotoxicity protection and imagine on Hela cells was investigated using the methyl thiazolyl tetrazolium (MTT) assay. It was found that MoS2 QDs not only has good biocompatibility, low toxicity and good cell penetration, but also could effectively decrease the cytotoxicity caused by the formed fibrils of BSA. The results obtained in this work suggested the potential biological application of MoS2 QDs in therapeutics and provided new insight into the design of multifunctional nanomaterials for amyloid-related diseases.
L. J. Sun, L. Qu, R. Yang, L. Yin, and H. J. Zeng,Cysteamine functionalized MoS2 quantum dots inhibit amyloid aggregation, International journal of biological macromolecules, 2019, 128, 870-876.
Highly efficient Polyaniline- MoS2 hybrid nanostructures based biosensor for cancer biomarker detection
In this work, polyaniline nanospindles have been synthesized using iron oxide as sacrificial template. These nanospindles were utilized for the fabrication of PANI- MoS2 nanoflower architectures via hydrothermal route. The electrostatic interaction between PANI and MoS2 improves the conductivity and provides more direct paths for charge transportation. SEM, TEM, XRD, Raman Spectroscopy techniques were employed to explore the crystal structure, and morphological properties of the PANI- MoS2 nanocomposite. Furthermore, an electrochemical biosensing platform based on PANI- MoS2 nanocomposite was fabricated for the specific detection of chronic myelogenous leukemia (CML) by using electrochemical impedance spectroscopy technique. The binding interactions between the pDNA/PANI- MoS2/ITO bioelectrode and target DNA sequence were also studied. The biosensor exhibits high sensitivity and wide detection range (10(-6) M to 10(-17) M) of target DNA with low detection limit (3-10(-18) M). Additionally, the specificity studies of the genosensor with various target DNA sequences (complementary, noncomplementary and one base mismatch) and real samples analysis of CML shows its potential for clinical diagnostics. (C) 2018 Elsevier B.V. All rights reserved.
A. Soni, C. M. Pandey, M. K. Pandey, and G. Sumana,Highly efficient Polyaniline- MoS2 hybrid nanostructures based biosensor for cancer biomarker detection, Analytica Chimica Acta, 2019, 1055, 26-35.
Association between selected essential trace element concentrations in umbilical cord and risk for cleft lip with or without cleft palate: A case-control study
A deficiency or excess of zinc (Zn), selenium (Se), cobalt (Co), molybdenum (Mo), or manganese (Mn) may interfere with fetal organogenesis. However, the impact of these essential trace elements on the occurrence of cleft lip with or without cleft palate (CL+/-P) remains to be elucidated. We aimed to investigate the associations between the amounts of Zn, Se, Co, Mo, and Mn in umbilical cord tissue and risk for CL+/-P. This case-control study included 200 controls without congenital malformations and 88 CL+/-P cases. Zn, Se, Co, Mo, and Mn concentrations in the umbilical cord were determined using inductively coupled plasma mass spectrometry. Information was collected on demographics, lifestyle behaviors, and dietary intake. The median concentrations of Zn in cases of CL+/-P and cleft lip with cleft palate (CLP), of Se in cases of CL+/-P and cleft lip only (CLO), and of Co in cases of CLO were lower than in the controls. In utero exposure to higher levels of Zn was associated with reduced risk for CL+/-P (OR=0.44, 95% CI, 0.20-0.93) and for CLP (OR=0.35, 95% CI, 0.14-0.86), and a higher level of Se was associated with reduced risk for CL+/-P and CLO, with ORs of 0.47 (95% CI, 0.23-0.95) and 0.22 (95% CI, 0.08-0.67), respectively. By contrast, higher levels of Mo in the umbilical cord were associated with 2.52-fold (95% CI, 1.23-5.20) and 2.59-fold (95% CI, 1.12-5.95) higher risk for CL+/-P and CLP, respectively. No association was found between Co or Mn and risk for CL+/-P. In conclusion, in utero exposure to higher levels of Zn and Se was associated with reduced risk for CL+/-P, but higher levels of Mo were associated with increased risk for CL+/-P.
W. Ni, W. Yang, J. Yu, Z. Li, L. Jin, J. Liu, Y. Zhang, L. Wang, and A. Ren,Association between selected essential trace element concentrations in umbilical cord and risk for cleft lip with or without cleft palate: A case-control study, The Science of the total environment, 2019, 661, 196-202.
HUMAN HEALTH
Trace element profiles in pregnant women's sera and umbilical cord sera and influencing factors: Repeated measurements
In utero exposure to toxic heavy metals and deficient or excessive essential trace elements during pregnancy may have adverse effects on pregnant women and their offsprings, which are of great concern. The objective of the present study was to characterize serum concentrations of multiple trace elements at multiple time points during pregnancy in Chinese women. Three thousand four hundred and sixteen pregnant women in total were included from MABC (Ma'anshan Birth Cohort) study. Fasting sera in the morning and questionnaires were obtained at three separate follow-up visits. Nineteen trace elements from serum samples were analyzed, including aluminum (Al), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), barium (Ba), thallium (Tl), lead (Pb), calcium (Ca), magnesium (Mg), mercury (Hg) and molybdenum (Mo). The total detection rates for most elements were 100% rather than Ni (99.98%), As (99.97%), Cd (99.6%), Ba (99.9%), Pb (99.8%), Hg (99.8%). The concentration distributions of 19 elements varied vastly. Median concentrations for all trace elements ranged from 38.5 ng/L to 102.9 mg/L. The moderate interclass correlation coefficients (ICCs) were observed for Co, Cu, Se and Hg, ranging from 0.40 to 0.62; the lower ICCs, ranging from 0.13 to 0.32 were for Fe, Zn, Cd, Ba, Tl, Mg and Mo. The intraclass correlation effects were not observed for the remaining elements, such as Al, V, Cr, Mn, Ni, As and Pb. The concentrations of each element between three time points were significantly different; significant differences were also found between any two time points except for Ni, Cd and Mo. Many factors could affect the levels of trace elements, and a very important factor of them was season. Consequently, a single measurement of elements in sera seems not enough to describe exposure levels throughout pregnancy; additionally, season affected exposure levels of trace elements with moderate ICCs showed certain regularity. Future analyses should take sampling seasons into consideration carefully.
C. M. Liang, X. Y. Wu, K. Huang, S. Q. Yan, Z. J. Li, X. Xia, W. J. Pan, J. Sheng, Y. R. Tao, H. Y. Xiang, J. H. Hao, Q. N. Wang, F. B. Tao, and S. L. Tong,Trace element profiles in pregnant women's sera and umbilical cord sera and influencing factors: Repeated measurements, Chemosphere, 2019, 218, 869-878.
THERAPEUTIC
Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: photodynamic anticancer and antibacterial activities
Octahedral molybdenum cluster complexes have recently come forth as pertinent singlet oxygen photosensitizers towards biological applications. Still, their phototoxic efficiency in the absence of nanocarriers remains limited due to their poor cellular uptake. Here, two cationic octahedral molybdenum cluster complexes, bearing carboxylate ligands with triphenylphosphonium (1) or N-methyl pyridinium (2) mitochondria-targeting terminal functions, have been designed and synthesized. Their photophysical properties in water and in vitro biological activity were investigated in the context of blue-light photodynamic therapy of cancer and photoinactivation of bacteria. Upon blue light irradiation, complex 1 displays red luminescence with a quantum yield of 0.24 in water, whereas complex 2 is much less emissive (PhiL < 0.01). Nevertheless, both complexes efficiently produce singlet oxygen, O2(1Deltag). Complex 1 is rapidly internalized into HeLa cells and accumulated in mitochondria, followed by relocation to lysosomes and clearance at longer times. In contrast, the more hydrophilic 2 is not internalized into HeLa cells, highlighting the effect of the apical ligands on the uptake properties. The treatment with 1 results in an intensive phototoxic effect under 460 nm irradiation (IC50 = 0.10 +/- 0.02 muM), which exceeds by far those previously reported for octahedral cluster-based molecular photosensitizers. The ratio between phototoxicity and dark toxicity is approximately 50 and evidences a therapeutic window for the application of 1 in blue-light photodynamic therapy. Complex 1 also enters and efficiently photoinactivates Gram-positive bacteria Enterococcus faecalis and Staphylococcus aureus, documenting its suitability as a blue-light photosensitizer for antimicrobial applications.
K. Kirakci, J. Zelenka, M. Rumlova, J. Cvacka, T. Ruml, and K. Lang,Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: photodynamic anticancer and antibacterial activities, Biomaterials science, 2019.
THERAPEUTIC USES OF MOLYBDENUM
Antibacterial MoO3
Bactericidal efficacy of molybdenum oxide nanoparticles against antimicrobial-resistant pathogens
Multidrug-resistant bacteria pose a major threat to effective antibiotics and alternatives to fight multidrug-resistant pathogens are needed. We synthetized molybdenum oxide (MoO3) nanoparticles (NP) and determined their antibacterial activity against 39 isolates: (i) eight Staphylococcus aureus, including representatives of methicillin-resistant S. aureus epidemic clones; (ii) six enterococci, including vancomycin-resistant isolates; and (iii) 25 Gram-negative isolates (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae), including extended spectrum beta-lactamases and carbapenemases producers. All isolates showed a MoO3 NP MIC of 700-800 mg l(-1). MoO3 NP produced a clear inhibition zone for S. aureus and all Gram-negative isolates at concentrations >/=25 mg ml(-1) and >/=50 mg ml(-1) for enterococci. When the NP solutions were adjusted to pH ~7, the biocidal activity was completely abolished. MoO3 NP create an acidic pH and show a universal antimicrobial activity against susceptible and resistant isolates belonging to the most relevant bacterial species responsible for hospital-acquired infections.
E. Lopes, S. Picarra, P. L. Almeida, H. de Lencastre, and M. Aires-de-Sousa,Bactericidal efficacy of molybdenum oxide nanoparticles against antimicrobial-resistant pathogens, Journal of medical microbiology, 2018.
Skin Cancer MoO3
Selectivity and sensitivity of molybdenum oxide-polycaprolactone nanofiber composites on skin cancer: Preliminary in-vitro and in-vivo implications
Cancer nanomedicine has emerged as a revolution in the last decade opening up promising strides for the cancer treatment. The major challenge in these therapeutic approaches resides in the failure of clinical trials owing to the immunological cancer microenvironment. Therefore, the success of next generation nanomedicine depends on tunable physicochemical nanomaterial design and corresponding clinical trials by integrating targeted delivery with mitigated toxicity. The present study deals with the fabrication of nanofibrous scaffold impregnated with molybdenum nanoparticles for targeted skin cancer therapeutics. Molybdenum oxide, a transitional metal oxide is gaining rapid importance due to its vital role in cellular and molecular metabolism. Polycaprolactone nanofibers were chosen as a matrix to localize the nanoparticles topically facilitating selective apoptosis of the tumor cells over the normal cells with mitigated side effects. The scaffold was designed to tailor the physicochemical, mechanical and biological suitability for skin cancer (melanoma and non melanoma). The designed scaffold was found to reduce more than 50% cell viability of the cancer cells selectively through apoptosis as confirmed using AO/PI staining and the probable mechanism could be attributed to the induction of mitochondria dependent apoptosis as observed by JC1 dye staining. In-vivo trials in zebra fish were found to reduce cancer progression by more than 30% in 14 days. The fabricated molybdenum trioxide nano constructs not only serve as tunable targeted systems but also open venues capable of ferrying chemotherapeutic drugs sparing normal cells alleviating the trauma due to side effects.
Janani, R. Lakra, M. S. Kiran, and P. S. Korrapati,Selectivity and sensitivity of molybdenum oxide-polycaprolactone nanofiber composites on skin cancer: Preliminary in-vitro and in-vivo implications, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS), 2018, 49, 60-71
Liver Cancer
Crystal Structure and Biological Evaluation of Two Novel Organic-Inorganic Hybrid Materials as Antitumor Agents in the Treatment of Liver Cancer
Two novel organic-inorganic hybrid materials {(Hbiz)(6)[(As2AsMo18O62)-As-III-Mo-V-O-VI]}center dot H2O (1, biz = benzimidazole) and (dim) [AS(2)(III)As(V)Mo(18)(VI)O(62)] [2, dim = 1,6-bis(imidazol)hexane] have been successfully obtained by using the molybdenum arsenate and different N donor organic compounds and determined through X-ray single-crystal diffraction technique. The in vitro cytotoxicity of compounds 1 and 2 was then investigated against three human liver tumor cell lines (SMMC7721, Bel-7402, and MHCC97) by MIT assay. It was found that the two compounds showed potent use as antitumor agents against the aforementioned cell lines.
B. H. Song, C. Li, and G. F. An,Crystal Structure and Biological Evaluation of Two Novel Organic-Inorganic Hybrid Materials as Antitumor Agents in the Treatment of Liver Cancer, Journal of Chemistry, 2018.
Facile preparation of molybdenum (VI) oxide - Modified graphene oxide nanocomposite for specific enrichment of phosphopeptides
To promote the development of phosphoproteome analysis in highly selective efficient tracing phosphorylated proteins or peptides, views of researches should not confined with intrinsic materials and their modification. New materials are supposed to be explored for phosphoproteome analysis. In this work, we first introduced Molybdenum (VI) oxide (MoO3) into phosphoproteome, loading on the graphene oxide (GO) nanosheets forming MoO3/GO nanocomposites by a simple two-step strategy. The GO nanosheets offered MoO3 a perfect stable platform for separation and concentration and MoO3 exhibited wonderful property in enriching phosphopeptides with highly selectivity and sensitivity on GO nanosheets. Specifically, the as-synthesized MoO3/GO nanocomposites exhibited excellent specificity (beta-casein: BSA = 1:1000), high detection sensitivity (1 fmol/mL) and well recovery (91.13%) in enriching phosphopeptides by metal oxide affinity chromatography (MOAC). Moreover, the as-synthesized MoO3/GO nanocomposites provided effective enrichment of phosphopeptides from nonfat milk (a total of twelve phosphopeptides signals) and human serum (a total of four endogenous phosphopeptides signals), displaying great biological compatibility, which demonstrated that the MoO3/GO nanocomposites is a promising candidate in selectively identifying and determining low-abundance phosphorylated peptides in biological sample. (C) 2017 Elsevier B.V. All rights reserved.
Sun, H. F., Zhang, Q. Q., Zhang, L., Zhang, W. B., and Zhang, L. Y.,Facile preparation of molybdenum (VI) oxide - Modified graphene oxide nanocomposite for specific enrichment of phosphopeptides, Journal of Chromatography A, 2017, 1521, 36-43
Effects of two-dimensional materials on human mesenchymal stem cell behaviors
Graphene, a typical two-dimensional (2D) material, is known to affect a variety of stem cell behaviors including adhesion, spreading, growth, and differentiation. Here, we report for the first time the effects of four different emerging 2D materials on human adipose-derived mesenchymal stem cells (hADMSCs). Graphene oxide (GO), molybdenum sulfide (MoS2), tungsten sulfide (WS2), and boron nitride (BN) were selected as model two-dimensional materials and were coated on cell-culture substrates by a drop-casting method. Acute toxicity was not observed with any of the four different 2D materials at a low concentration range (<5 mug/ml). Interestingly, the 2D material-modified substrates exhibited a higher cell adhesion, spreading, and proliferation when compared with a non-treated (NT) substrate. Remarkably, in the case of differentiation, the MoS2-, WS2-, and BN-modified substrates exhibited a better performance in terms of guiding the adipogenesis of hADMSCs when compared with both NT and GO-modified substrates, based on the mRNA expression level (qPCR) and amount of lipid droplets (ORO staining). In contrast, the osteogenesis was found to be most efficiently induced by the GO-coated substrate (50 mug/mL) among all 2D-material coated substrates. In summary,.
Suhito, I. R., Han, Y., Kim, D. S., Son, H., and Kim, T. H.,Effects of two-dimensional materials on human mesenchymal stem cell behaviors, Biochemical and biophysical research communications, 2017, 493, 578-584.
Label-free and recalibrated multilayer MoS2 biosensor for point-of-care diagnostics
Molybdenum disulfide (MoS2) field-effect transistor (FET)-based biosensors have attracted a significant attention as promising candidates for highly sensitive, label-free biomolecule detection devices. In this paper, toward practical applications of biosensors, we demonstrate reliable and quantitative detection of a prostate cancer biomarker using the MoS2-FET biosensor in a non-aqueous environment by reducing non-specific molecular binding events and realizing uniform chemisorption of anti-PSA onto the MoS2 surface. A systematic and statistical study on the capability of the proposed device is presented, and the biological binding events are directly confirmed and characterized through intensive structural and electrical analysis. Our proposed biosensor can reliably detect various PSA concentrations with a limit of 100 fg/mL. Moreover, rigorous theoretical simulations provide a comprehensive understanding of the operating mechanism of the MoS2-FET biosensors, and further suggests the enhancement of the sensitivity through engineering device design parameters.
Park, H., Han, G. C., Lee, S. W., Lee, H., Jeong, S. H., Naqi, M., AlMutairi, A., Kim, Y. J., Lee, J., Kim, W. J., Kim, S., Yoon, Y., and Yoo, G.,Label-free and recalibrated multilayer MoS2 biosensor for point-of-care diagnostics, ACS Appl Mater Interfaces, 2017.
Enhancing the colloidal stability and surface functionality of molybdenum disulfide (MoS2) nanosheets with hyperbranched polyglycerol for photothermal therapy
Molybdenum disulfide (MoS2) nanosheets are gaining increasing attention due to their attractive properties and myriads of potential applications. However, challenges in the enhancement of their colloidal stability and surface functionality still remain and significantly restrict their practical applications. Herein, we present a viable approach to functionalize MoS2 nanosheets with multihydroxy hyperbranched polyglycerol (HPG) shell by surface-initiated ring-opening polymerization technique. The grafting of HPG from the surface of MoS2 nanosheet yielded MoS2-g-HPG nanohybrid with excellent water dispersibility, good biocompatibility, and greatly enhanced colloidal stability against pH change, ionic strength variation and long-term storage. The MoS2-g-HPG also exhibited excellent light-to-heat conversion capability for in vitro photothermal therapy application. Meanwhile, the MoS2-g-HPG showed favorable surface functionality owing to its numerous surface hydroxyl groups, as demonstrated by the conjugation of functional molecules such as fluorescent dye rhodamine B. As such, this paper opens up new opportunities to empower MoS2 nanosheets and other two-dimensional inorganic nanosheets with desired properties for various applications.
Huang, B., Wang, D., Wang, G., Zhang, F., and Zhou, L.,Enhancing the colloidal stability and surface functionality of molybdenum disulfide (MoS2) nanosheets with hyperbranched polyglycerol for photothermal therapy, Journal of colloid and interface science, 2017, 508, 214-221.
Modified cyclopentadienyl molybdenum compounds with enhanced cytotoxic activity towards MOLT-4 leukaemia cells
A series of new cyclopentadienyl molybdenum compounds bearing substituted phenanthroline ligands [(eta(5)-C5H4CH2C6H4X-4)Mo(CO)2(L-N,L-N)][BF4] (X = F, Cl, Br; L-N,L-N=phen, 5-NH2-phen, 4,7-Ph-2-phen) was prepared and characterized using infrared and NMR spectroscopies. Crystal structures of [(eta(5)-C5H4CH2C6H4F-4)Mo(CO)(2)(NCMe)(2)][BF4], [(eta(5)-C5H4CH2C6H4X-4)Mo(CO)(2)(phen)][BF4] (X = F, Cl, Br) and [(eta(5)-C5H4CH2C6H4Cl-4)Mo(CO)(2)(4,7-Ph-2-phen)][BF4](4,7-Ph-2-phen)HBF4 were determined using X-ray diffraction analysis. Biological studies revealed a strong cytotoxic effect of the chelating ligands. Although the cytostatic effect of the halogen in the side chain of the cyclopentadienyl ring is negligible, it could be used for future post-modification of these types of cytotoxic active molybdenum-based compounds.
Honzickova, I., Vinklarek, J., Ruzickova, Z., Rezacova, M., and Honzicek, J.,Modified cyclopentadienyl molybdenum compounds with enhanced cytotoxic activity towards MOLT-4 leukaemia cells, Applied Organometallic Chemistry, 2017, 31.
MoS2-based sensor for the detection of miRNA in serum samples related to breast cancer
Early diagnosis of cancer is critical for the treatment of patients, and can reduce the risk of death. Breast cancer is one of the most common malignant tumors in women, and miR-21, as an important breast cancer biomarker, can be helpful for the early diagnosis of breast cancer. In this work, we have developed an efficient, sensitive and specific fluorescence sensor based on the novel nanomaterial molybdenum disulfide (MoS2) to detect miR-21. The novel nanomaterial MoS2 was introduced to a fluorescent dye-labeled DNA probe to fabricate the fluorescence sensor, and then non-complementary miRNA, one-base mismatched miRNA and complementary miR-21 were separately introduced to the sensor to hybridize with the DNA probe. By monitoring the change of the fluorescence signal before and after DNA-miRNA hybridization, miR-21 could be detected. We found that the sensor could discriminate complementary miR-21 from one-base mismatched miRNA and non-complementary miRNA successfully. Furthermore, the biosensor was able to detect miR-21 down to a concentration of 500 pM, and the detection could be completed in only 40 min. The novel MoS2 fluorescence sensor, with the advantages of fast analysis, high sensitivity and specificity, and low cost, is suitable for miR-21 detection which is of great importance for the early diagnosis of breast cancer. What's more, the novel sensor, with high sensitivity and selectivity, was also used to detect miR-21 in serum samples, making it a promising method for detection in real samples from patients with cancer. Thus the novel MoS2 fluorescence sensor shows huge potential for early diagnosis of cancer.
B. J. Cai, S. Guo, and Y. Li,MoS2-based sensor for the detection of miRNA in serum samples related to breast cancer, Analytical Methods, 2018, 10, 230-236.
Corrosion and surface modification on biocompatible metals: A review
Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium -based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys. (C) 2017 Elsevier B.V. All rights reserved.
R. I. M. Asri, W. S. W. Harun, M. Samykano, N. A. C. Lah, S. A. C. Ghani, F. Tarlochan, and M. R. Raza,Corrosion and surface modification on biocompatible metals: A review, Materials Science & Engineering C-Materials for Biological Applications, 2017, 77, 1261-1274.
|
Neutron-activatable needles for radionuclide therapy of solid tumors
Various approaches have been undertaken to enhance the delivery of therapeutic agents, including tissue-killing radionuclides, into solid tumors. Here, we describe the preparation of conical needles composed of Ti and Mo coated by pulsed laser deposition or chemical vapor deposition with elements (Ho and Re) that can readily yield radioactive isotopes following irradiation in a neutron flux. The radioactive needles, whose design were based on solid microneedle arrays used in transdermal drug delivery, can be produced with minimal handling of radioactivity and subsequently inserted into tumors as a means of internal radiation therapy. Ho and Re were specifically chosen because of their large neutron capture cross-sections as well as the desirable radiotherapeutic properties of the resultant radionuclides. Neutron-absorbing shields were also developed to prevent the production of unwanted radionuclides after neutron irradiation of the needle base materials. Neutron activation calculations showed that therapeutically significant amounts of radionuclides can be produced for treating solid tumors. Stability studies demonstrated that Re did not leach off the Mo needles. These coated neutron-activatable needles offer a new approach to internal radiation therapy of tumors that allows precise tailoring of the absorbed radiation dose delivered to the tumor by controlling the coating thickness and the irradiation time. (c) 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3273-3280, 2017.
J. Kim, R. J. Narayan, X. Lu, and M. Jay,Neutron-activatable needles for radionuclide therapy of solid tumors, Journal of biomedical materials research. Part A, 2017, 105, 3273-3280.
MoS2 nanosheets encapsulated in sodium alginate microcapsules as microwave embolization agents for large orthotopic transplantation tumor therapy
In recent years, it is prevalent to treat various kinds of the tumors through microwave ablation method. However, it is still very difficult to ablate large tumors by the traditional microwave ablation therapy. In this work, an effective microwave embolization agent designed by encapsulating molybdenum sulfide nanosheets in the sodium alginate microcapsules, denoted as MSMCs, was prepared for the effective therapy of large tumor. The toxicity evaluation showed that MSMC had a good biocompatibility in vitro. The in vitro and in vivo experiments demonstrated that the MSMC was an excellent embolic and microwave susceptible agent that could be used for dual-enhanced microwave ablation therapy. As such, the MSMC showed excellent tumor therapeutic effect with 5 times larger ablation zone observed by magnetic resonance (MR) imaging than the microwave alone after 3 days treating. Besides, the tumor is nearly completely ablated and can not be recurrent due to the persistent hyperthermia. Moreover, MSMCs have a good biocompatibility and can be degraded and cleared from the body. It is believed that the MSMC is demonstrated to be a promising multifunctional theranostic agent used for treating the larger tumor via the synergistic therapy of enhanced microwave ablation and transcatheter arterial embolization (TAE).
Fu, C. H., He, F., Tan, L. F., Ren, X. L., Zhang, W., Liu, T. L., Wang, J. Z., Ren, J., Chen, X. D., and Meng, X. W.,MoS2 nanosheets encapsulated in sodium alginate microcapsules as microwave embolization agents for large orthotopic transplantation tumor therapy, Nanoscale, 2017, 9, 14846-14853.
|
Anticancer
Bioresponsive Polyoxometalate Cluster for Redox-Activated Photoacoustic Imaging-Guided Photothermal Cancer Therapy
Although various types of imaging agents have been developed for photoacoustic (PA) imaging, relatively few imaging agents exhibit high selectivity/sensitivity to the tumor microenvironment for on-demand PA imaging and therapy.
Herein, molybdenum-based polyoxometalate (POM) clusters with the highest oxidation state of Mo(VI) (denoted as Ox-POM) were designed as novel agents for redox-activated PA imaging-guided photothermal therapy. Capable of escaping from recognition and capture by the liver and spleen, these renal clearable clusters with ultrasmall size (hydrodynamic size: 1.9 nm) can accumulate in the tumor, self-assemble into larger nanoclusters at low pH, and are reduced to NIR absorptive agents in the tumor microenvironment.
Studies in 4T1 tumor-bearing mice indicated that these clusters could be employed for bioresponsive PA imaging-guided tumor ablation in vivo.
Our finding is expected to establish a new physicochemical paradigm for the design of PA imaging agents based on clusters, bridging the conventional concepts of "molecule" and "nano" in the bioimaging field.
Ni, D., Jiang, D., Valdovinos, H. F., Ehlerding, E. B., Yu, B., Barnhart, T. E., Huang, P., and Cai, W.,Bioresponsive Polyoxometalate Cluster for Redox-Activated Photoacoustic Imaging-Guided Photothermal Cancer Therapy, Nano Lett, 2017, 17, 3282-3289.
MoS2 Alzheimer's
Molybdenum Disulfide Nanoparticles as Multifunctional Inhibitors against Alzheimer's Disease
The complex pathogenic mechanisms of Alzheimer's disease (AD) include the aggregation of beta-amyloid peptides (Abeta) into oligomers or fibrils as well as Abeta-mediated oxidative stress, which require comprehensive treatment. Therefore, the inhibition of Abeta aggregation and free-radical scavenging are essential for the treatment of AD. Nanoparticles (NPs) have been found to influence Abeta aggregation process in vitro. Herein, we report the inhibition effects of molybdenum disulfide (MoS2) NPs on Abeta aggregation. Polyvinylpyrrolidone-functionalized MoS2 NPs were fabricated by a pulsed laser ablation method. We find that MoS2 NPs exhibit multifunctional effects on Abeta peptides: inhibiting Abeta aggregation, destabilizing Abeta fibrils, alleviating Abeta-induced oxidative stress, as well as Abeta-mediated cell toxicity. Moreover, we show that MoS2 NPs can block the formation of the Ca2+ channel induced by Abeta fibrils in the cell membrane for the first time. Thus, these observations suggest that MoS2 NPs have great potential for a multifunctional therapeutic agent against amyloid-related diseases.
Han, Q., Cai, S., Yang, L., Wang, X., Qi, C., Yang, R., and Wang, C.,Molybdenum Disulfide Nanoparticles as Multifunctional Inhibitors against Alzheimer's Disease, ACS Appl Mater Interfaces. 2017 Jun 28;9(25):21116-21123. doi: 10.1021/acsami.7b03816. Epub 2017 Jun 14.
THERAPEUTIC
Lung and breast cancer cells
223 Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: Their cytotoxicity towards lung and breast cancer cells
Nanotechnology provides an emerging potent alternate mode of cancer therapy. Nanomaterials dispersion or solubility is of particular concern in utilising their full potential applications in biomedical fields. PEGylation of nanomaterials is considered to provide products with stealth properties, and physiological environment with no obvious adverse effects.
The purpose of this work was to develop a sustainable one-step method for fabrication of hierarchical microspheres of PEGylated MoS2 nanosheets using a stoichiometric ratio of Mo(VI) and thiourea.
This study further investigated the cytotoxicity of the PEGylated MoS2 nanosheets towards lung (A549) and breast cancer (MCF-7) cell lines by analysing morphological changes and performing dose-dependent cell proliferation, and cytotoxicity analysis using adenosine 5'-triphosphate (ATP), and lactate dehydrogenase (LDH) assay.
For comparison, MoO3 nanorods were synthesised by simple chemical route and their cytotoxicity towards lung (A549) and breast cancer (MCF-7) cell lines were checked.
The findings suggested that PEGylated MoS2 nanosheets have excellent cytotoxicity towards breast cancer (MCF-7) cell lines, and MoO3 have better cytotoxicity towards lung (A549) cancer cell lines.
This work envisages an accessible foundation for engineering sophisticated biomolecule-MoS2 nanosheets conjugation due to the defect-rich biocompatible surface, to achieve great versatility, additional functions, and further advances in the biomedical field. (C) 2016 Elsevier B.V. All rights reserved.
Kumar, N., George, B. P. A., Abrahamse, H., Parashar, V., and Ngila, J. C.,Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: Their cytotoxicity towards lung and breast cancer cells, Applied Surface Science, 2017, 396, 8-18.
[PEGylated MoS2: lipoic acid-terminated polyethylene glycol (LA-PEG) grafted onto the surface of MoS2 nanoflakes endowing the nanoflakes with high colloidal stability and very low cytotoxicity.
See Wei Feng, Liang Chen, Ming Qin, Xiaojun Zhou, Qianqian Zhang, Yingke Miao, Kexin Qiu, Yanzhong Zhang and Chuanglong He. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. Scientific Reports 5, Article number: 17422 (2015). doi:10.1038/srep17422.]
MoS2 cancer therapy
Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar MoS2-based Nanocomposite
In comparison to conventional tumor treatment methods, photothermal therapy (PTT) is one of the innovative therapeutic strategies that employs light to produce the localized heat for targeted ablation of cancer cells.
Among various kinds of heat generation nanomaterials, transition metal dichalcogenide nanosheets, especially-molybdenum disulfide (MoS2) have recently been investigated as one of the promising PTT candidates because of their strong absorbance in the near-infrared (NIR) tissue transparency window and excellent photothermal conversion capability.
In line with the great potential of MoS2-based nanomaterials in biomedical applications, their intrinsic therapeutic performance and corresponding cellular response are required to be continually investigated.
In order to further improve MoS2-based PTT efficacy and dissect the molecular mechanism during heat stimuli, in this study, we successfully designed a novel and effective PTT platform by integration of MoS2 nanosheets with peptide-based inhibition molecules to block the function of heat shock proteins (Hsp90), one type of chaperon proteins that play the protective roles in living system against cellular photothermal response.
Such combined nanosystem could effectively induce cell ablation and viability assays indicated approximately five folds higher PTT treatment efficacy (8.8 % viability) than that of MoS2 itself (48 % viability) upon 808 nm light irradiation.
Moreover, different from the case based on MoS2 alone that could cause tumor ablation through the process of necrosis, the detailed mechanism analysis revealed the inhibition of Hsp90 could significantly increase the photothermal-mediated apoptosis, hence resulting in remarkable enhancement of photothermal treatment.
Such promising studies provide the great opportunity to better understand the cellular basis of light triggered thermal response. Moreover, they can also facilitate the rational design of new generations of PTT platforms toward future theranostics.
Ariyasu, S., Mu, J., Zhang, X., Huang, Y., Yeow, E. K., Zhang, H., and Xing, B.,Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar MoS2-based Nanocomposite, Bioconjugate chemistry, 2017.
Insulin mimetic
Exposure to sodium molybdate results in mild oxidative stress in Drosophila melanogaster
OBJECTIVES: The study was conducted to assess the redox status of Drosophila flies upon oral intake of insulin-mimetic salt, sodium molybdate (Na2MoO4).
METHODS: Oxidative stress parameters and activities of antioxidant and associated enzymes were analyzed in two-day-old D. melanogaster insects after exposure of larvae and newly eclosed adults to three molybdate levels (0.025, 0.5, or 10 mM) in the food.
RESULTS: Molybdate increased content of low molecular mass thiols and activities of catalase, superoxide dismutase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase in males. The activities of these enzymes were not affected in females. Males exposed to molybdate demonstrated lower carbonyl protein levels than the control cohort, whereas females at the same conditions had higher carbonyl protein content and catalase activity than ones in the control cohort. The exposure to 10 mM sodium molybdate decreased the content of protein thiols in adult flies of both sexes. Sodium molybdate did not affect the activities of NADP-dependent malate dehydrogenase and thioredoxin reductase in males or NADP-dependent isocitrate dehydrogenase in either sex at any concentration.
DISCUSSION: Enhanced antioxidant capacity in upon Drosophila flies low molybdate levels in the food suggests that molybdate can be potentially useful for the treatment of certain pathologies associated with oxidative stress.
Perkhulyn, N. V., Rovenko, B. M., Lushchak, O. V., Storey, J. M., Storey, K. B., and Lushchak, V. I.,Exposure to sodium molybdate results in mild oxidative stress in Drosophila melanogaster, Redox report : communications in free radical research, 2017, 1-10.
[Drosophila melanogaster = fruit fly. See https://en.wikipedia.org/wiki/Drosophila_melanogaster and Similarity to humans:
“A March 2000 study by National Human Genome Research Institute comparing the fruit fly and human genome estimated that about 60% of genes are conserved between the two species.[32] About 75% of known human disease genes have a recognizable match in the genome of fruit flies,[33] and 50% of fly protein sequences have mammalian homologs. An online database called Homophila is available to search for human disease gene homologues in flies and vice versa.[34] Drosophila is being used as a genetic model for several human diseases including the neurodegenerative disorders Parkinson's, Huntington's, spinocerebellar ataxia and Alzheimer's disease. The fly is also being used to study mechanisms underlying aging and oxidative stress, immunity, diabetes, and cancer, as well as drug abuse.”
Antioxidant and associated enzymes. See http://www.news-medical.net/health/Antioxidant-Enzyme-Systems.aspx Enzymes that catalyze reactions to neutralize free radicals and reactive oxygen species: superoxide dismutase, glutathione peroxidise, glutathione reductase, catalases, lipoic acid. They require co-factors such as selenium, iron, copper, zinc, and manganese for optimum catalytic activity.
“These form the body’s endogenous defence mechanisms to help protect against free radical-induced cell damage. The antioxidant enzymes – glutathione peroxidase, catalase, and superoxide dismutase (SOD) – metabolize oxidative toxic intermediates.]