

NEWSLETTER

17th Annual General Meeting

This event will be kindly hosted in Shanghai by Jinduicheng Molybdenum Mining Corp, owners of the largest moly mine in China, during the week beginning 12 September 2005. Non-members wishing to attend should contact the Secretariat for further details.

HSE Management

The focus on HSE by regulatory authorities affects all metals and IMOA is not alone in spending an increasing amount of time and money to ensure that the industry it represents is ready to respond with facts and figures. IMOA has appointed a team (see photo) to implement its work programme. Sandra Carey, who has been connected with moly and IMOA for many years, will direct our activities; and technical support will be provided by Wieslaw Piatkiewicz who is employed by the Galvanizers Association and whose expertise in risk assessment will be invaluable.

IMOA's HSE Management Team: Sandra Carey and Wieslaw Piatkiewicz

To most of our readers, neither will need any introductions. Both may be contacted via the IMOA office.

Membership

Welcome to:

■ JSC Polema Corp,

a Russian company manufacturing metal powders. Its product range comprises more than 500 molybdenum product items including large sized high purity (99.90-99.96%) molybdenum sputtering targets and molybdenum metal powder.

Chemical Applications of Molybdenum

IMOA has tended to focus its market development work programme on metallurgical applications since these comprise some 80% of moly usage and appear to offer the greatest scope for increasing moly consumption.

This Newsletter comprehensively remedies the fact that an article on chemical applications is long overdue.

The author, Philip Mitchell, is Emeritus Professor of Chemistry at the University of Reading in the UK_ihe has been associated with the moly industry since the mid-1960s and is a part-time consultant to IMOA. He is responsible for compiling the Database "Mo in Relation to Health, Safety and the Environment", which may be accessed on our website.

The article which follows is an adapted version of the paper he presented in an entertaining fashion (not easy with all those complicated bonds and formulae) at the Association's Annual General Meeting in 2004.

INTERNATIONAL MOLYBDENUM ASSOCIATION 2 Baron's Gate, 33 Rothschild Road, London W4 5HT, UK Tel: +44 20 8742 2274 Fax: + 44 20 8742 7345 email: info@imoa.info www.imoa.info

Chemical Applications of Molybdenum

Understanding molybdenum chemistry and applications

Philip C.H. Mitchell

School of Chemistry, University of Reading, Reading RG6 6AD, UK

Molybdenum Compounds and Applications

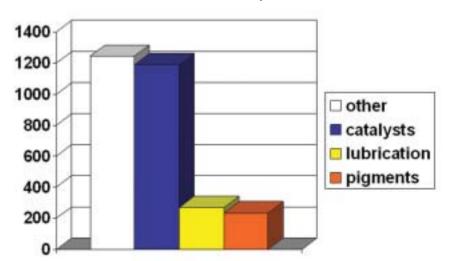
The purpose of this article is to describe the technical applications of molvbdenum compounds and the underlying chemistry. Important, i.e. higher volume, applications are listed in Table 1. These applications have been known for many years and are well established. Research in this area is about improving performance and developing understanding of how the compounds work. Molybdenum compounds account for ca 20% of molybdenum usage with catalysts the major application. Recent usage data for the United States are shown in Fig. 1.

The types of compound which find application are overwhelmingly molybdenum-oxygen compounds and molybdenum-sulfur compounds, see *Table 2*. However compounds of molybdenum with other elements continue to attract interest and feature in the research and patent literature. Compounds are listed in *Table 2* with an indication of actual use (italicised) or proposed use and numbers of US patents since 1976.

Basic Molybdenum Chemistry

Molybdenum is an element of the second transition series in Group 6 of the Periodic Table between chromium and tungsten. Chemically molybdenum resembles tungsten much more than chromium. For example, the highest oxidation state (VI) of molybdenum and tungsten (molybdates and tungstates) is much less oxidising than chromium(VI) (chromate and dichromate).

(chromate and dichromate).

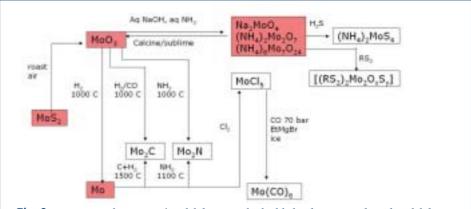

Table 1 Some Uses of Molybdenum Compounds		
catalysts	MoO3, molybdates, e.g. iron and bismuth molybdates molybdenum disulfide	
lubricants	molybdenum disulfide molybdenum-sulfur complexes, e.g with dithiocarbamate (R2NCS2 ⁻) and dithiophosphate ((R0)2PS2 ⁻).	
corrosion inhibitors	sodium molybdate	
paints, and surface coatings	molybdates, e.g. zinc molybdate	
smoke suppressors	MoO3, ammonium octamolybdate	
pigments	ammonium and alkylammonium octamolybdates, phosphomolybdic acid	
ceramics	molybdenum disilicide	
nanomaterials	molybdenum disulfide, molybdenum carbide	
agriculture	molybdates	

The outstanding feature of molybdenum is its extraordinary chemical versatility:

- oxidation states from –II to VI;
- coordination numbers from 4 to 8;
- varied stereochemistry;
- the ability to form compounds with

most inorganic and organic ligands, with a particular preference for oxygen, sulfur, fluorine and chlorine donor atoms;

formation of bi- and polynuclear compounds containing bridging oxide or chloride ligands and/or molybdenummolybdenum bonds.


Fig. 1 Molybdenum chemicals usage in metric tonnes (1000 kg) contained Mo, United States 2002. Data from the US Geological Survey Minerals Division. http://minerals.usgs.gov/minerals/pubs/commodity/molybdenum/molybmyb02.pdf

Entering Molybdenum Chemistry– Making Molybdenum Compounds

Compounds commonly used as starting compounds in preparative molybdenum chemistry are molybdenum trioxide, and ammonium and sodium molybdates.

The preparative chemistry of molybdenum is summarised in *Fig. 2* starting with molybdenum disulfide, the principal ore of molybdenum. Molybdenum disulfide is chemically unreactive: we enter molybdenum chemistry through molybdenum trioxide, prepared by roasting molybdenum disulfide in air. Reactions of molybdenum trioxide are shown in *Fig. 2.*

Dissolution in aqueous sodium hydroxide or ammonia giving simple molybdate salts and polymolybdates which may be crystallised (see later).

Fig. 2 Preparative chemistry of molybdenum. The highlighted compounds and molybdenum metal are those which find high volume applications.

Calcination of an ammonium molybdate giving a sublimed, pure molybdenum trioxide.

Reduction with hydrogen to molybdenum metal.

Reactions with carbon monoxide or carbon and ammonia giving molybdenum carbide and nitride.

Preparation of molybdenum pentachloride and molybdenum hexacarbonyl. The pentachloride rapidly hydrolyses in ambient air and is too reactive to find wide application. Molybdenum hexacarbonyl has an extensive substitution chemistry.

Preparation of molybdenum-sulfur compounds by reaction with hydrogen disulfide or organo-sulfur compounds.

Higher Oxidation States

The commonly encountered compounds of molybdenum in its applications are molybdenum trioxide and molybdates (oxidation state VI) and molybdenum disulfide (oxidation state VI) (see *Table 1*).

Molybdates and polymolybdates

These are compounds of molybdenum(VI): sodium molybdate, Na²MoO⁴; ammonium dimolybdate, (NH⁴)²Mo²O⁷, ammonium heptamolybdate, (NH⁴)⁶Mo⁷O²⁴.4H²O and ammonium octamolybdate, (NH⁴)⁴Mo⁸O²⁶. They are readily available commercially and are the starting point for the preparation of many other molybdenum compounds.

Sodium molybdate crystals contain the discrete tetrahedral [MoO₄]^{2.} ion. The polymolybdates consist of linked polyhedra containing six- and four-, and less commonly five-coordinate molybdenum(VI).

Molybdenum trioxide and the molybdates of colourless cations are themselves colourless. Blue or green colours are due to the presence of reduced impurities except for those molybdates where the cation is coloured, e.g. violet cobalt(II) molybdate, CoMoO₄, and green nickel(II) molybdate, NiMoO₄

In aqueous solution molybdate and polymolybdate ions are in rapid equilibria; the species depends on the pH and the concentration,see **Table3**. The molybdate species in aqueous solutions of molybdenum(VI) (*speciation*)are listed in **Table 3**.

Table 2	Mo compounds—Partner Element(a) Applications(b)
	Patents (c)

В	С	N	0	F
Mo2B	Mo ₂ C	Mo2N	MoO₃,	MoF₀
catal. ceram.	catal.	catal.	molybdates catal. corros. pigment smoke	catal.
168	817	299	3671	89
	Si	Р	S	CI
	MoSi ² ceram.	MoP catal. glasses	MoS₂ catal. lub.	MoCl₅ catal.
	1827	15	4381	244
			Se	Br, I (=X)
			MoSe₂ Batt.	MoBr4, MoI3
			30	
() I · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •	The second secon	and the second	

(a) Listed in Periodic Table order. (b) batt., batteries and electrode materials; catal., catalyst; ceram., ceramic; corros., corrosion inhibitor; lub., lubricant; pigment, pigment; smoke, smoke suppressant.
 Significant uses are italicised. (c) Figures in red are the numbers of patents in the US Patent data base, 1976 to present (http://www.uspto.gov/patft/index.html).

Table 3 Mo(VI) Species in Aqueous Solution		
рΗ	Mo concentration/ mol I ⁻¹	Mo(VI) species
>7	all	[MoO4] ²⁻
5–6	>10 ⁻³ mol l ⁻¹	[Mo7O24] ⁶⁻
3–5	>10 ⁻³ mol l ⁻¹	[Mo ₈ O ₂₆] ⁴⁻
0.9	>10 ⁻³ mol l ⁻¹	MoO3 precipitates

Which compounds crystallise from solution depends on the conditions: concentration and pH. To prepare sodium molybdate, Na2MoO4.2H2O molybdenum trioxide is dissolved in sodium hydroxide solution at 50-70 ^oC. The solution is filtered and the filtrate is crystallised in a batch crystalliser. The hydrated salt is dehydrated at 100 °C. Ammonium dimolybdate, (NH4)2M02O7, is prepared by dissolving MoO₃ in aqueous ammonia solution and crystallising the solution at ca 100 °C by flash evaporation. The structure of ammonium dimolybdate, determined by X-ray crystallography on crystals from the manufacturing plant, consists of infinite chains of pairs of edge-shared MoO6 octahedra, adjacent pairs being linked by MoO4 tetrahedra with the chains having equal numbers of octahedra and tetrahedra. The structure is quite different from that of dichromate which contains discrete [Cr₂O₇]²⁻ ions. Ammonium heptamolybdate, (NH4)6M07O24.4H2O, is prepared by crystallising a solution of MoO₃ in aqueous ammonia of the requisite NH₃/Mo/H₂O stoichiometry at ambient temperature. The structure comprises linked [MoO6] octahedra only. The alkylammonium molybdates are salts-not complexes; tetrakis (isopropylammonium)octamolybdate (VI), $[C_3H_{10}N]_4[MO_8O_{26}]$ is typical.

Heteropolymolybdates

The heteropolymolybdates consist of $[MoO_6]$ octahedra incorporating atoms of a different element, the heteroatom. The heteroatoms are completely surrounded by the oxygen atoms of the $[MoO_6]$ octahedra. The resulting coordination of the heteroatom may be tetrahedral or octahedral. The 12-molybdo species, $[X^{+n}Mo_{12}O_{40}]^{<8\cdot n}$; is an important group

with tetrahedrally coordinated heteroatoms (X). An example is 12-molybdophosphoric acid H₃[PMo₁₂O₄₀].28 H₂O, prepared by dissolving molybdenum trioxide in phosphoric acid; it is yellow and readily soluble in water.

Lower Oxidation States

Molybdates(VI) unlike chromates(VI) are not strong oxidising agents: much of the familiar chemistry of molybdenum is that of the VI and V oxidation states. The products of the reduction of molybdate in aqueous solution depend on the pH and the reducing agent. In alkaline solution molybdates are reduced by, e.g. sodium dithionite, to molybdenum blues, mixed Mo(VI)-Mo(V) oxides. In dilute hydrochloric and sulfuric acids tin(II) chloride effects reduction to brown molybdenum(V) species; in concentrated hydrochloric acid the green $[MoOCl_5]^2$ - species is formed. With a more powerful reducing agent, e.g. zinc amalgam, reduction proceeds to hydrated molybdenum(III) species. Typical reduction potentials (in volts) in acidic solution are for Mo(VI)/Mo(V), 0.50, and for Cr(VI)/Cr(III), 1.35. The more positive is the potential, the more oxidising is the couple.

Compounds of molybdenum(II) and lower oxidation states are stabilised by Mo-Mo bonds as in molybdenum(II) acetate, Mo²(CH³CO²)⁴, and molybdenum(II) chloride, Mo⁶Cl¹², and by unsaturated ligands, for example, molybdenum(0) hexacarbonyl, Mo(CO)⁶. There is an extensive and important organometallic chemistry of molybdenum, i.e. compounds with Mo-C bonds with, e.g. cyclopentadiene and benzene.

Molybdenum– sulfur Compounds

In addition to its affinity for oxygen, molybdenum in its higher oxidation states, (III) to (VI), has an appreciable affinity for sulfur, a property which is important in its biochemistry and in a number of applications. The affinity of molybdenum for sulfur is illustrated by its occurrence as the sulfide ore, MoS₂, and in molybdoenzymes; its precipitation in qualitative analysis as a sulfide rather than as a hydroxide or

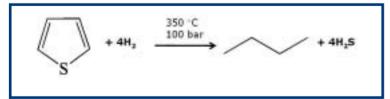
Catalyst	Application	Reaction	Importance
Sulfided Co-Mo or Ni-Mo on alumina	Hydrotreating, hydrodesulfurisation	Remove sulfur from crude petroleum	Oil and petroleum refining
Bi-Mo oxides	Propene selective oxidation, ammoxidation	Synthesis acrolein, acrylonitrile	Polymers and plastics
Mo-V oxides	Acrolein oxidation	Synthesis acrylic acid	Polymers and plastics
Fe-Mo oxides	Methanol oxidation	Synthesis formaldehyde	Formalin, polymers, resins
Mo oxide on alumina	Olefin metathesis	Propene to ethene butene	Olefin and synthesis
Mo complexes	Epoxidation	Olefin to epoxide	Polyether synthesis
Heteropolyacids— phosphomolybdate	Propene hydration	Propene to alcohol	Alcohols synthesis

Table 4 Molybdenum in catalysts

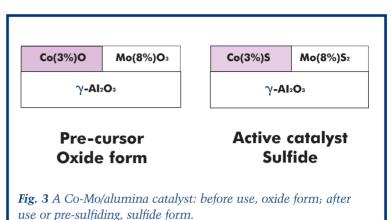
hydrated oxide. Molybdenum disulfide is black.

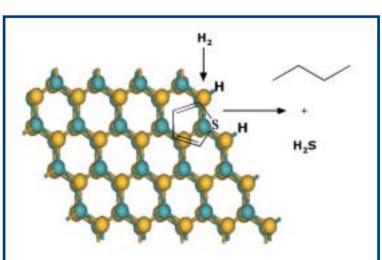
It is unreactive towards water and acids and alkalis. However, molybdenum disulfide and other Mo-S compounds oxidise when heated in air to molybdenum trioxide. Because of the unreactivity of molybdenum disulfide, Mo-S compounds are made via reaction with molybdates as in the preparation of hydrodesulfurisation catalysts (see later). Molybdenum disulfide is used, per se, as a dry lubricant (see later).

Molybdenum forms complexes with sulfide ([MoS₄]²⁻) and many organosulfur ligands. These compounds unlike their oxygen counterparts are often brightly coloured, e.g. [MoS₄]²⁻ is deep orange-red. The dithiocarbamates and dithiophosphates are applied as oil soluble lubricant additives (see later).


Applications

Molybdenum Compounds in Catalysis


The function of a catalyst is both to speed up a chemical reaction and to steer it towards a desired product, e.g. an oxygenated organic compound rather than carbon dioxide and water. Catalysts having molybdenum as a component are listed in *Table 4*. We see from *Table 4* that it is Mo-O compounds which find application in high volume catalysis. Sulfide catalysts are derived from the oxides.


Molybdenum in hydrodesulfurisation catalysts

Removal of sulfur compounds from gasoline and diesel is driven by ever more stringent legislation since during combustion the sulfur compounds oxidise to sulfur dioxide, the source of acid rain. They are also potent poisons of auto-exhaust catalysts. The process is *catalytic hydrodesulfurisation*—removal of sulfur by reaction of the compound with hydrogen—for which molybdenum-based catalysts are essential. Recalcitrant compounds are thiophene and benzothiophenes. The reaction of thiophene with hydrogen is typical:

The catalyst, see *Fig. 3*, comprises cobalt (3 wt-%) and molybdenum (8 wt-%) as sulfides supported on alumina. It is prepared by impregnating γ -alumina with ammonium molybdate and cobalt(II) nitrate solutions followed by drying and calcination. The molybdenum and cobalt sulfides are formed when the catalyst is pre-sulfided or used. The active component is molybdenum disulfide. Cobalt (a promoter) is added to increase the activity. Alumina provides surface area (ca 250 m² g⁻¹) by dispersing the cobalt and molybdenum.

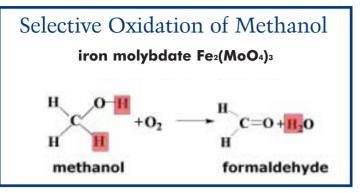
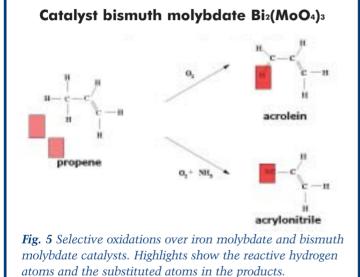


Fig. 4 Hydrodesulfurisation of thiophene catalysed by molybdenum disulfide: Mo atoms, green, S atoms yellow. The catalyst dissociates H_2 molecules into H atoms which react with adsorbed thiophene yielding butane and hydrogen sulphide.


The active catalyst consists of hexagonal slabs of molybdenum disulfide, sections of a molybdenum disulfide layer, *Fig. 4.* The utility of molybdenum in this catalysis derives from the layer structure molybdenum disulfide. (The same is true for tungsten disulfide which also catalyses hydrodesulfurisation.) The catalytic sites are at the slab edges (where cobalt atoms, not shown, are also located). A reactant molecule, thiophene, is shown in *Fig. 4* adsorbed near an edge site and reacting with hydrogen atoms to give, ultimately, butane and hydrogen sulfide. We require of molybdenum disulfide the ability to dissociate hydrogen molecules, adsorb reactant molecules, and release sulfur as hydrogen sulfide reversibly.

Molybdenum in selective oxidation catalysts

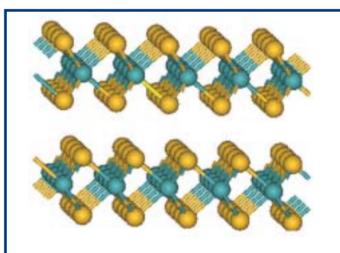
The technically important reactions of methanol oxidation to formaldehyde and propene to acrolein and acrylonitrile are shown in *Fig. 5.*

Selective Oxidation of Propene

In these selective oxidations the slow step, which controls the overall reaction rate and which it is desired to catalyse, is activation of the first C-H bond. With these two-component catalysts, the first step, breaking the C-H bond, is catalysed by the more basic oxide, e.g. bismuth oxide. Molybdenum is involved in the next step— activation of a second hydrogen and insertion of an oxygen atom into the organic molecule. In this step molybdenum is reduced. Reduced molybdenum is reoxidised by oxygen from the feed. The catalysis depends on the ability of oxomolybdenum species to cycle between the VI and IV oxidation states, in the process releasing and transferring an oxygen atom:

 $Mo(VI)O_2 \leftrightarrow Mo(IV)O + O$

Note that the inserted oxygen comes from the lattice of the catalyst; there is no direct reaction between the organic compound and an oxygen molecule. The same molybdenum chemistry—reduction of molybdenum accompanied by oxygen atom transfer—also operates with oxomolybdenum enzymes, e.g. xanthine oxidase.


Other applications of molybdenum compounds in catalysis

A number of molybdenum compounds find application in homogeneous catalysis: e.g. in epoxidation (see *Table 4*), olefin and acetylene metathesis ($Mo(CO)_6$), olefin polymerisation ($MoCl_5$ and triethylaluminium in Ziegler Natta type catalysts).

Molybdenum-sulfur Compounds in Lubrication

Molybdenum disulfide is used as a dry lubricant in, e.g. greases, dispersions, friction materials and bonded coatings. Molybdenum-sulfur complexes may be used in suspension but more commonly dissolved in lubricating oils at concentrations of a few percent.

The ability of molybdenum disulfide to function as a lubricant is intimately related to its layer structure, *Fig.6.* A layer of molybdenum atoms is sandwiched between two layers of sulfur atoms.

Fig. 6. A side view of the layer structure of molybdenum disulfide. The green spheres represent molybdenum atoms and the yellow spheres sulphur. The outer layers of sulfur atoms bind to each metal surface. Contact between the metal surfaces is prevented.

When molybdenum disulfide is dispersed between two metal surfaces a layer binds to each metal surface through the sulfur atoms. Then the asperities (surface irregularities on the metals) are prevented from coming into contact. Sliding contact is between the outer layers of sulfur atoms which are only weakly interacting. The surfaces are therefore able to slide easily relative to one another.

Compounds typically used as oil soluble additives are shown in *Fig.* 7. They are used dissolved in lubricating oils. At a hot surface—the interfacial region between metals in rubbing contact—the complexes decompose to molybdenum disulfide or to a polymeric protective film. These compounds are also of some benefit in protecting the oil against oxidation; they are anti-oxidants.

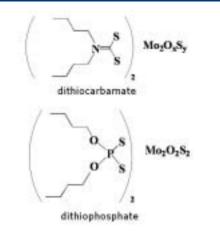


Fig. 7. Molybdenum-sulfur compounds used as soluble lubricating oil additives.

Molybdenum compounds as corrosion inhibitors and in paints

The use of molybdates as corrosion inhibitors and in paints is summarised in Table 5. Soluble molybdates, e.g. sodium molybdate, are used in solution in central heating systems and motor engine coolants. The insoluble molybdates are applied as paint primers and as paints. Molybdates, unless combined with a coloured cation or mixed with a coloured compound, are white and so have application as white pigments. For example zinc molybdate which is non-toxic and an excellent corrosion inhibitor. The orange colour of the molybdenum orange pigment is due to the presence of chromate. This pigment consists of lead molybdate, chromate and sulphate in a mixed crystal system. Lead chromate is yellow whereas the molybdated chromes are bright orange. The colour change is due to a modification of the crystal structure of lead chromate when crystallised with molybdate.

The ability of molybdate to inhibit corrosion is demonstrated in standard tests in which steel plates are exposed to a salt spray. Molybdate is seen to prevent surface pitting of test pieces (e.g., see http://www.pcimag.com). Molybdate prevents corrosion through its ability to be adsorbed by a metal oxide layer, filling gaps and so promoting the formation of an adherent oxide layer. Corrosion of the underlying substrate is prevented-it becomes passivated.

Molybdates as smoke suppressants

Ammonium octamolybdate and molybdenum trioxide are used as smoke suppressants in, for example, PVC cabling. They are thought to act by undergoing reduction to lower valent molybdenum, e.g. molybdenum dioxide, which then cross links the plastic to form a char. Molybdenum stabilises the char so preventing the formation of smoke particles.

Molybdenum disilicide in ceramics and advanced materials

Because of its high melting point (2030 °C) and excellent oxidation resistance molybdenum disilicide, MoSi2, finds application as a specialised ceramic in: heating elements, air furnaces; gas burners; diesel engine glow plugs; molten metal lances; aerospace, gas turbine engines, outer seal.

Molybdenum compounds in agriculture and biology

Molybdenum is an essential trace element-in plants, in enzymes which catalyse nitrogen fixation (nitrogenase) and nitrate reduction (nitrate reductase); in animals, in enzymes involved in, e.g., nitrogen metabolism (e.g., xanthine oxidase) and sulphur metabolism (sulfite oxidase). Some soils, especially acid soils require supplemental molybdenum for healthy plant life. For human beings molybdenum features as a component of over-the-counter vitamin and mineral supplements. Molybdenum is non toxic for humans.

The vital role of molybdenum in biology derives from its affinity for sulfur, its finely balanced oxidation states, and its ability in its higher oxidation states to transfer oxygen atoms.

Outlook

We have seen that molybdenum has a rich and varied chemistry and applications in catalysis, lubrication, corrosion inhibition, paints and pigments which reflect this chemistry. Molybdenum is an essential trace element in biology-vital for life processes. Unlike some metals molybdenum is not toxic towards human beings. Molybdenum chemistry is an active research area, both in fundamentals and applications. Faced with a chemical challenge it is always worth 'thinking molybdenum'.

Further Information

Fundamentals of molybdenum chemistry are presented in inorganic chemistry texts: Cotton, F.A., and G. Wilkinson, Carlos A. Murillo and Manfred Bochmann, Advanced Inorganic Chemistry, Sixth Edition, 1999, John Wiley, New York.

Greenwood, N.N., and A. Earnshaw, Chemistry of the Elements, Second Edition 1997, Butterworth, London. Fundamental chemistry and applications are covered in Ullmann's Encyclopedia of Industrial Chemistry, VCH Weinheim 1990 *Vol. A 16: Molvbdenum and Molvbdenum* Compounds.

The chapter by E.R. Braithwaite in a *multi-author publication is an excellent* account of molybdenum applications: Braithwaite, E.R. and J. Haber (eds.), Molybdenum: An Outline of its Chemistry and Uses, 1994, Elsevier, Amsterdam.

Steel, aluminium, copper		
Central heating systems	Sodium molybdate	
Automobile engine coolant		
Paints	Zinc, calcium, strontium molybdate	
Plastics	Molybdenum orange: lead molybdate plus lead chromate	
Rubber	Phosphomolybdates	
Ceramics	7	

Table 5 Molybdenum-based Corrosion Inhibitors and Paints

IST of MEMBERS

Secretary-General: Michael Maby Technical Director: Nicole Kinsman HSE Management Team: Sandra Carey and Wieslaw Piatkiewicz

AUSTRIA

Interalloys Trading & Business Consulting GmbH

Floragasse 7, A-1040 Vienna, AUSTRIA Tel: + 43 1 504 6138; Fax: + 43 1 504 6192 Email: interal@ycn.com

Plansee Aktiengesellschaft

6600 Reutte, AUSTRIA Tel: +43 5672 6000; Fax: +43 5672 600 500 Email: info@plansee.com Website: www.plansee.com

Treibacher Industrie AG

Auer-von-Welsbach, Strasse 1,9330 Althofen, AUSTRIA Tel: +43 4262 505; Fax: +43 4262 505 8416 Email: ferdinand.kampl@treibacher.com Website: www.treibacher.com

BELGIUM Sadaci NV

Langerbruggekaai 13, B-9000 Gent, BELGIUM. Tel: +32 92 540 511; Fax: +32 92 540 571 Email: msmeets@sadaci.be Website:www.sadaci.be

CHII F

Codelco Chile Huerfanos 1270, Santiago, CHILE Tel: +56 2 690 3406; Fax: +56 2 690 3366 Email: vperez@codelco.cl Website: www.codelco.cl

Estudios Antofagasta Copper Ltda Ahumada 11, Oficina 613, Santiago, CHILE Tel: +56 2 377 5000; Fax: +56 2 377 5096 Email: gsanchez@aminerals.cl Website: www.antofagasta.co.uk

Molibdenos y Metales SA Huerfanos 812, 6th Floor, Santiago, CHILE Tel: +56 2 368 3600; Fax: +56 2 368 3653 Email: info@molymet.cl Website: www.molymet.cl

CHINA

Jinduicheng Molybdenum Mining Corp 17th Floor, Jie Rui Mansion, No. 5 West section of the second South Ring Road, Xian,

Shaanxi, PC 710068, CHINA Tel: +86 29 837 8676; Fax: +86 29 837 8771 Email: jck@jdcmmc.com Website:www.jdcmmc.com

Jinzhou Sing Horn Enterprise Co Ltd

No 56 Shangdali, Taihe District, Jinzhou, Liaoning, PC 121004, CHINA Tel: +86 416 517 1930; Fax: +86 416 517 1928 Email: singhorn@singhorn.com Website: www.singhorn.com

Luoyang Luanchuan Molybdenum Group

Co Ltd 374 Junshan West Road, Luanchuan County, Luoyang, Henan, PC 471500, CHINA Tel: +86 379 6681 9855; Fax: +86 379 6681 9854 Email:wenhuiw@126.com Website:www.clcmo.com

FRANCE

Arcelor Purchasing 11/13 Cours Valmy, 92070 La Defense Cedex, FRANCE

Tel: +32 89 302 401; Fax: +32 89 302 005 Email: paul.gielen@purchasing.arcelor.com Website: www.uaine-alz.com

AMPERE Alloys

12 Mail Joliot Curie, Saint Ouen L'Aumone (95), 95310 FRANCE Tel: +33 1 34 32 4007; Fax: +33 1 30 37 0584 Email: f.celerier@amperealloys.com

Molycorp Inc 120 rue Jean Jaures, 92300 Levallois Perret, FRANCE Tel: +33 1 7098 7755; Fax: +1 281 276 9317 Email: gdebeco@molycorp.com http://www.molycorp.com

GERMANY Grondmet Metall-und Rohstoffvertriebs GmbH

Luegallee 55, 40545 Düsseldorf Oberkassel, GERMANY Tel: +49 211 577250; Fax: +49 211 5772555 Email: info@grondmet.de Website: www.grondmet.de

FW Hempel Metallurgical GmbH Leopoldstr. 16, D-40211 Düsseldorf, GERMANY Tel: + 49 211 168 060; Fax: + 49 211 168 0648 Email: info@metalluraical.de Website: www.metallurgical.de

Metherma GmbH

Arnheimer Str. 103 D-40489 Düsseldorf, GERMANY Tel: $+49\ 211\ 40\ 80\ 840;$ Fax: +49 211 40 71 26 Email: molybdenum@metherma.de

HC Starck GmbH

Im Schleeke 78 - 91. D-38642 Goslar, GERMANY Tel: +49 5321 7510; Fax: +49 5321 751 6192 Email: info@hcstarck.com Website: www.hcstarck.com

IRAN

Pars Molybden Co No 46 Bahar Alley, South Shiraz St Molla Sadra Ave, 14358 Tehran, IRAN Tel: +98 21 806 3917; Fax: +98 21 806 1476 Email: info@parsmolybden.com

ISRAEL Metal-Tech Ltd

Ramat Hovav, PO Box 2412, Beer-Sheva 84874, ISRAEL Tel: +972 8 657 2333; Fax: +972 8 657 2334 Email: general@metal-tech.co.il Website: www.metal-tech.co.il

JAPAN

Kohsei Co Ltd Kohsei Building, 2-11 Kobunacho Nihonbashi Chuo-ku, 103-0024 Tokyo, JAPAN Tel: +81 3 5652 0901; Fax: +81 3 5652 0905 Email: itibu@kohsei.co.jp Website: www.kohsei.co.jp

Soiitz Corp

Ferroalloys Section 1, Iron Ore and Ferroalloys Dept 1-20 Akasaka 6-chome, Minato-ku, Tokyo 107-8655, JAPAN Tel: +81 3 5520 3529; Fax: +81 3 5520 3517 Email: matsumura.hiroshi@sojitz.com Website: www.sojitz.com

Taiyo Koko Co Ltd

3-1, 3-chome Marunouchi, Chiyoda-ku, Tokyo 100-0005, JAPAN Tel: +81 3 3216 6041; Fax: +81 3 3216 6045 Email: trade@taiyokoko.co.jp

KOREA

Samsun Logix Corp 5th Floor 146-1 Leema Building, Soosong-Dong, Chongno-Ku, Seoul, KOREA Tel: +82 2 399 8611; Fax: +82 2 399 8600 Email: tjpark@samsun.co.kr Website: www.samsun.co.kr

LUXEMBOURG.

Considar 3 rue Pletzer, Centre Helfent, L-8080 Bertrange, LUXEMBOURG Tel: +352 45 99 99 1; Fax: +352 45 99 99 223 Email: heinz.duechting@considar.lu

MEXICO -

Mexicana de Cobre SA de CV Av Baja California 200, Col. Roma Sur 06760 Mexico DF, MEXICO Tel: +525552647775Fax: + 52 555 264 7769 Email: archibaldo.deneken@mm.gmexico.com Website: www.gmexico.com

PFRII

Southern Peru Copper Corporation Av Caminos del Inca 171 Chacarilla del Estanque, Surco, Lima 33, PERU Tel: + 51 1 372 1414; Fax: +51 1 372 0237 Email: jdlheros@southernperu.com.pe Website: www.southernperu.com

RUSSIA

JSC Polema Corp Przhevalskogo Str 3, Tula, 300016, RUSSIA Tel: +7 095 633 1177; Fax: +7 095 633 1527 Email: polema@metholding.com Website: www.polema.ru

SWEDEN

AB Ferrolegeringar PO Box 71 63, Sveavägen 9, 103 88 Stockholm, SWEDEN Tel: +46 8 454 6560; Fax: +46 8 796 0636 Email: info@ferrolegeringar.se Website: www.ferrolegeringar.se

Outokumpu Stainless AB PO Box 74, S-774 22 Avesta, SWEDEN Tel: +46 226 810 00; Fax: +46 226 813 05 Email: info.stainless@outokumpu.com

Scandinavian Steel AB

Birger Jarlsgatan 15, SE 111 45 Stockholm. SWEDEN Tel: +46 8 614 2850; Fax: +46 8 611 6434 Email: metals@scandinaviansteel.se

IIK

Adams Metals Ltd Norwich House, 14 North Street, Guildford, Surrey, GU1 4AF, UK Tel: +44 1483 577900; Fax: +44 1483 578008 Toll Free/ USA- Tel: +1 800 473 8427; Fax: +1 800 473 8428 Email: terry.adams@adamsmetals.com Website: www.adamsmetals.com

Alfred H Knight International Ltd Eccleston Grange, Prescot Road, St Helens, Merseyside WA10 3BQ, UK Tel: +44 1744 733757; Fax: +44 1744 27062 Email: enquiries@ahkgroup.com Website: www.ahkgroup.com

Derek Raphael & Co Ltd

2nd Floor, 6 York Street, London,W1U 6PL, UK Tel: + 44 20 7535 1690; Fax: +44 20 7504 8483 Email: araphael@derek-raphael.co.uk Website: www.derek-raphael.co.uk

Alex Stewart (Assayers) Ltd Caddick Road, Knowsley Industrial Estate Merseyside LL34 9ER, UK. Tel: + 44 151 548 7777; Fax: +44 151 548 0714 Email: enquiries@ alexstewart.com

TS Metals (UK) Ltd Power Road Studios, 114 Power Road, Chiswick, London W4 5PY, UK Tel: + 44 20 8742 3420; Fax: + 44 20 8742 3421 Email: mail@tsmetals.co.uk

Wogen Resources Ltd 4 The Sanctuary, Westminster, London,

SW1P 3JS, UK. Tel: +44 20 7222 2171 Fax: +44 20 7222 5862 Email: Allan.kerr@wogen.com Website: www.wogen.com

USA -Barex Resources Inc

93 The Circle, Passaic Park, NJ 07055, USA Tel: +1 973 778 6470; Fax: +1 413 460 7930 Email: nrshapiro@attglobal.net

Bear Metallurgical Co

679 East Butler Road, Butler, PA 16002, USA Tel: +1 724 283 6800; Fax: +1 724 283 6078 Email: kevin.jones@bearmet.com

The Chem-Met Co

P 0 Box 819, Clinton, MD 20735-0819, USA Tel: +1 301 868 3355; Fax: +1 301 868 8946 Email: afox@chem-metco.com

Climax Molybdenum Co

One North Central, Phoenix, AZ 85004, USA Tel: +1 602 366 8100; Fax: +1 602 366 7329 Email: climax@phelpsdodge.com Website: www.climaxmolybdenum.com

Comsup Commodities Inc

1 Bridge Plaza North, Fort Lee, NJ 07024, USA Tel: +1 201 947 9400; Fax: +1 201 461 7577 Email: comsup@comsupinc.com

CRI/Criterion Inc Two Greenspoint Plaza, Suite 1000, 16825 Northchase Drive, Houston, TX 77060, USA Tel: +1 281 874 2661; Fax: +1 281 874 2580 Email: ken.darmer@cricatalyst.com

Gulf Chemical & Metallurgical Corp PO Box 2290, Freeport, Texas 77542-2290, USA

Tel: +1 979 233 7882; Fax: +1 979 233 7171 Email: bdeering@gulfchem.com

Kennecott Molybdenum Co 8315 West 3595 South, PO Box 6001, Magna, Utah 84044-6001, USA Tel: +1 801 252 3000; Fax: +1 801 252 3292 Email: cowleyj@kennecott.com

Osram Sylvania Products Inc

Hawes Street, Towanda, PA 18848, USA Tel: +1 570 268 5000; Fax: +1 570 268 5113 Email: susan.dunn@sylvania.com

Powmet Inc

P O Box 5086, 2625 Sewell Street, Rockford, IL 61125, USÁ Tel: +1 815 398 6900; Fax: +1 815 398 6907 Email: wct@powmet.com

Shangxiang Minmetals Inc 150 N Santa Anita Avenue, Suite 500, Arcadia, CA 91006, USA Tel: + 1 626 445 8946; Fax: + 1 626 445 6943 Email: georgesong@e-metalmarket.com

Sheng Tong Enterprises (USA) Corp 17870 Castleton Street, Suite 240, City of Industry, CA 91748, USA Tel: +1 626 581 7105;

Fax: + 1 626 581 7195

Website: www.risingst.com

CO 80110-3469, USA

Tel: +1 303 761 8801;

Fax: +1 303 761 7420

Email: marionc@tcrk.com

Email: george.zhu@risingst.com

Thompson Creek Metals Co

945 West Kenyon Avenue, Englewood

http://www.langeloth.com/contact.hmtl